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Theorems of existence and uniqueness are proved for problems of the theory of elasticity 
of contact type. The problem of the ~o~erat-Mikhlin spectrum is also investigated. 

1, Problems of the theory of elasticity will be termed problems of contact type when 
boundary conditions of the following form (*) 

u~~)~~jzj + b&, = NiQ), <g=1 9 2 -, . . *, N) (1.1) 
are given for each of the parts X(Q) of the boundary Z of the body under consideration. 

which occupies the volume V , Here akj are the components of the stress tensor, Us 
are the components of the displacement vector, ,lii are the contact tractions, and j, are 
the direction cosines of the normal to the surface. The elements of the matrices A(q) are 
dimensionless, while those of the matrices B@)have the dimensions of a modulus of elas- 

ticity divided by length. We shall assume at the beginning that the matrices At”) and 
B(q) are diagonal with nonnegative elements 

al’“’ 0 0 I$“’ 0 0 

A(q) = 0 @’ n , B(q) = 0 b(2Q) 0 

0 0 a;@ 0 0 b$$ 

If .kfn) = 0 , then necessarily in this case 6 ,Iqf f 0 and on the part of the surface 
xtq) the displacement in the k direction is specified 

uk = N(,P) / b$d (k=i,2,3> 

If b,(q) = 0, then ak (9) is necessarily nonzero and the traction in the k direction is 

specified on the part of the surface Z(q) 

CQ& = NIB) / ap) (k = 1,2,3) 

In particular, so-called mixed boundary conditions are obtained if q takes on the 

values 1 and 2 ; the surface tractions St0 are specified on L‘(i) and the displacements uio 

are specified on Z@). For this case 

a$) = s*j, b$) = 0, jq’) = s,* 

a!?) xzz 0, 
23 bi;’ z CGij, Np’ = Cut0 

where c is some quantity having the same dimensions as the elements of the matrices 
B(q) 

2. The problem of the theory of elasticity consists of integrating the equations of 

motion Oijt j + PF~ = Pni” (2.1) 

so that the boundary conditions (1.1) and some initial conditions are satisfied. Here the 

*) Summation from 1 to 3 on repeated subscripts is to be understood except in cases 
where the values of the scripts are enclosed in angle brackets. 
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stress tensor is expressed in terms of the strain tensor by Hooke’s law for an isotropic 
material 01 j = MSi j + 2pQj 

and the tensor of small strains eij is expressed in terms of the displacements ui by the 

relations 
eij = $ 0% + Uj,i), 6 = a,& = u,$,k 

The solution of the problem which has been posed is unique. Indeed, it follows from 
the equations of motion (2.1) that for the difference between two solutions U; = r$)- 

We split the integral on the right-hand side of (2.2) into the sum of integrals over the 

surfaces 5(‘J). On each of these surafces we define a diagonal matrix I(*) according to 

the following rule. An element %.(‘J) of the matrix Icq’ is zero if at least one of the cor- 

responding elements of the matrices A(@and B (q)( a,(@ or&(@) is zero, and 

$1 = b$) / nj$ 

if the elements at*(q) and b{,(*) are both nonzero. Then, as is clear from the homogeneus 

boundary conditions (1.1) which are satisfied by the difference solution, 

Thus, the relation (2.2) can be written in the following form : 

The uniqueness of the solution of the problem which has been formulated then follows 
by virtue of the fact that each term of (2.3) is positive and that the initial conditions 

are homogeneous, provided that Poisson’s ratio v is in the following range : 

- 1 < v < ‘I3 (2.4) 

(It is obvious that uniqueness still holds in the case where rib(q)) and bi,(“are both 
strictly negative). 

The uniqueness of the quasi-static problem, for which the right-hand sides of Eqs,(2.1) 
are taken as zero, follows from what has been proved as a special case. In this case the 
equations of equilibrium can be written in the following form: 

tli.Jj + XUj,ij = i i (2.5) 

and the boundary conditions (1.1) on the part X(q) of the surface Z in the form 

U.{!’ [(X - 1) I@kj.j + 1~ (?dk, j + uj [,)I I- b;;‘uh. = ~(9’ f (2.6) 

1 PFi Niq' 
XZl_“y, fiiZ_ 

- * p2(q) =--r P i 

9, Papers [l, 23 are devoted to the investigation of the Cosserat spectrum, i.e. to the 
problem of the eigenvalues x and eigenfunctions of the first two boundary value problems 
of the statical theory of elasticity. We shall make use of a theorem of Mikhlin C2] to 
study this question in problems of contact type, Eqs. (2.5) and (2.6). 

Let the operational equation 
(R--zT)u=tl (3.1) 
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be given and satisfy the following conditions: 
R is a positive definite differential operator ; 

T is a differential operator which is symmetric for the given boundary conditions ; 
the operator R - TT is assumed to be elliptic for all values of t except the discrete 

set MI; 
for the given boundary conditions the complementing condition [3] is satisfied for all 

T except the discrete set M,. 
Then the following statements are correct : 

1. The spectrum of Eq. (3.1) can have as points of accumulation only points of 
the set MI or of the set M,. 

2. The system of eigenfunctions of Eq. (3.1) is complete in H , the energy space 
of the operator R. 

3. The eigenvalues are real. 
4. Eigenfunctions corresponding to distinct eigenvalues are orthogonal with respect 

to the metric of the space H. 
Let us consider the homogeneous system of equations 

A.*u~ zz ui,jj + Xuj,ij = 0 

and the homogeneous boundary conditions of contact type 

aif’ [(X - 1) l,Ujq j + lj (uk, j + uj, k)] f bi$‘nk = 0 

By the operator R , we shall mean the operator 

RUG G - Ui,jj - Uj,ij 

the boundary conditions corresponding to the operator r acting on X, 

-rui S ai$‘lj (ok, j + uj, k) ‘+ bfR)uk I z 
The operator T will be 

TUT E Uj,ij 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.9) 

with the operator t corresponding to the boundary conditions on each of the IZCq) 

tU( Z U,(i'l@lj,j (3.7) 

The homogeneous boundary value problem (3.2) and (3.3) then corresponds to the 

operational equation (3.1) with the boundary conditions 

(r - tt) ui = 0 
i 
r=*-_1=2~ 

I--2v ) 
We use Betti’s third formula [4] 

s 
(~iA*vi - viA*~i) dV = 

s 
[U+Pi (V) -ViPi (u)] dZ (3.3) 

V c 

Pi (u) f (X - 1) h”j, j + (% j + uj,i) lj 

to prove the positive definiteness of the operator R . 

Breaking up the right-hand side of (3.8) into a sum of integrals on the x(q) and for- 
ming the matrix F(q) as before, we have 

s 
(u~A*v+ - viA* Ui) dV = 5 [ riy’ (ViUj -VjUl) dZ (3.9) 

V q=l t(q) 

The symmetry of the operator R (3.4) for the boundary conditions (3.5) follows from 
(3.9) with x = 1 . Further, using Betti’s second formula [4] 
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uiA*uidV = 
s 

uiPi (u) dZ - 
s 

E (u, u).dv (3.10) 
z V 

The quadratic form 

is positive definite for x = i (i. e. for Y = 0) by virtue of the uniqueness theorem which 
has been proved. Since the surface integral on the right-hand side of (3.10) 

(3.11) 

is negative and equals zero only for u; e 0, the operator R obtained from A* for x = 1 
is positive definite. 

Moreover, the operator T , Eq, (3.6). is symmetric under the boundary conditions (3.7) 

s 
(uj. ijvi - vj, tjui) dV = c (uj,jvi - vj, jui) lid.2 E 0 

V 'c 

The differential equation (3.2) is elliptic in the sense of I, G. Petrovskii for all real x 
except x = -i and II = 0~. Calculation shows that the “complimenting condition” of 

[S] is satisfied for all x except x = -2, -1.0, CO. Here it can be considered that the 
elements of the matrices A and B are sufficiently smooth functions of the coordinates 

on Z. The premises of Mikhlin’s theorem are satisfied. and therefore the statements 

1-4 hold. The operator of the problem (3.2). (3.3) is normally solvable and’ has a finite 
index [5] for all x except x = -2, -i, 0, 00. Other eigenvalues of the problem (3.2), 

(3.3) have finite multiplicity. 
The Agmon-Douglls-Nirenberg determinants which occur in the “complementing 

boundary conditions” are zero only for those parts ,X(q) of the surface Z on which only 
displacements or only tractions are specified. Therefore, the points x = -CC, x = --1 
are eigenvalues of infinite multiplicity [2]. 

Knowing the eigenfunctions ui(" of the problem (3.2). (3.3) (we shall assume that 
they are orthonormal in the energy space H, of the operator R), we can easily find the 

solution of the inhomogeneous problem (2.5). (2.6) 

In particular, the theorem of existence of the solution of the problem of the theory of 
elasticity with boundary conditions of contact type follow from this, since in the range 

(2.4) there are no points of the spectrum of the problem (3.2), (3. &by virtue of the 
theorem of uniqueness which has been proved. 

4, Now let the matrices A and B which occur in the relations (1.1) not be necessa- 

rily diagonal. We shall assume that these matrices are singular if, and only if, they have 
only zeros in the kth row or the kth column. We now construct the matrix 

I = A’B (4.1) 

If the matrix A is nonsingular. then AI = A-1, where A-l is the inverse of A. If A is 
singular, then the following three cases can arise : 

1) A is singular (i. e. there are only zeros in the kth row or k th column), but the 
matrix A, formed by striking out the k th row and k th column of A is nonsingular. 
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2) Both A and A, are singular (there are only zeros in the 1 th row or I th column), 
but Al formed from A, by striking out the 1 th row and I th column is nonsingular. 

3) All three matrices A, A, and A, are singular. 
In Case (1) we place zeros in the ii th row and kth column of the matrix A’ , and the 

remaining elements are those of AZ-r. In Case (2) the elements of the k th and 1 th rows 
and columns of the matrix A’ are set equal to zero and in the remaining place we put 

Al-‘. Finally, in Case (3) A’ G 9. 
It is easy to see now that if the matrix I? (4.1) is positive definite, then all the state- 

ments proved above for diagonal matrices A and B remain valid, since the quadratic 
forms yij(‘)uiuj entering into the relations (2.3) and (3.11) are also positive definite in 

the present case. 
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The possibility of application of Neumann’s procedure to the investigation of shells with 

holes is examined. 
The transfer of Neumann’s method to shells is connected with two difficulties. First of 

all, the application of Kirchhoff’s stresses does not reduce the problem directly to well- 
studied integral equations. Therefore, in this paper initially the investigation is related 
to the principal vector and moment. The latter circumstance, however, leads to singular 
integral equations which also have fixed singularities. However, the specific form of the 
resulting equations allows the establishment of Fredholm’s alternative for these equations 
within the required limits. After the proof of Fredholm’s alternative the convergence of 

Neumann’s method is proven. The results of Fredholm present the possibility to establish 
convergence of Kirchhoff’s stresses for sufficiently smooth contours of holes and load. 

We shall examine shells with holes for which Neumann’s method can be realized on 


